财富全程

【推荐】制造业能不能玩转人工智能

Nancy 0

制造业能不能玩转人工智能?

2018-10-17 10:37来源:西门子//

原标题:制造业能不能玩转人工智能?

随手在搜索引擎中输入人工智能四个字,网页上旋即显示约两千万个与“人工智能”相关的搜索结果,足见这个概念的火爆。为什么传统制造业需要人工智能?如何利用人工智能技术代替人脑,甚至使其超越人脑来实现制造业效率的提升?

随着计算机处理速度大幅提升、存储成本下降、以及云计算、物联网等技术的发展,让人工智能的应用成本大幅降低。消费者对个性化和产品品质升级的需求也不断发展,大大增加了制造业的复杂性,包括生产的组织形式、质量检测环节、仓储物流等环节。

系统越来越复杂,人的学习曲线就会越缓慢,人应对复杂系统的能力就会成为制约技术进步和应用的瓶颈。在传统工业界大都以人的决策和反馈为核心,这就会导致系统中有很大一部分的价值并没有被释放出来。而人工智能为制造业带来的变革,就是摆脱人类认知和知识边界的限制,为决策支持和协同优化提供可量化依据。

本文讨论人工智能在生产不同环节,包括产线设备、质量检测、仓储物流、整体运维四个方面的应用。

人工智能在生产产线的应用

人工智能在工厂运维的应用:

比如一条生产线突然发出故障报警,机器能够自己进行诊断,找到哪里产生了问题,原因是什么,同时还能够根据历史维护的记录或者维护标准,告诉我们如何解决故障,甚至让机器自己解决问题、自我恢复。

人工智能在预测性维护的应用:

如果工业生产线或设备如果突然出现问题,那造成的损失是非常巨大的。利用大数据建模和神经网络等算法,可以让机器在出现问题之前就感知到或者分析出可能出现的问题。

比如,工厂中的数控机床在运行一段时间后刀具就需要更换,西门子的数控机床预防性维护解决方案,通过分析历史的运营数据,机器可以提前知道刀具会损坏的时间,从而提前准备好更换的配件,并安排在最近的一次维护时更换刀具。

产线设备参数优化

生产产线工位少则几十个,多则数百个,涉及的产线设备、生产物料、工人都非常多。通过基于生产线的大量数据,基于大数据分析和智能算法可以优化生产工艺、提升产品品质。在中策橡胶,基于阿里云et工业大脑,将生产端的各类数据进行深度运算和分析,形成了资源最优利用的方案组合,提升了5%混炼胶合格率。

人工智能在质量检测的应用

现在有很多工厂传统上都是用人工在做质量检测的工作,在生产流水线上的质检员,他们需要每天花10个小时以上的时间去判断质量。很多工厂这个工作岗位两三个月就要轮一次岗,因为肉眼确实受不了。

为什么之前没用技术的手段帮助解决质检的问题呢?

主要原因是传统视觉设备误判率比较高。大概是有百分之二十,甚至三十的误判率。人工智能最重要的一个能力,它具备学习能力。比如说,同样一个划痕,它会和传统系统一样,第一次都犯错误。但是人工智能第二次、第三次,它不会犯一样的错误,它具备一个学习能力。

正如百度前人工智能首席专家吴恩达和富士康合作的智能检测,通过利用深度学习,神经网络,就可以让电脑快速学习做自动检测的工作。现在人工智能介入了以后,工厂的这种误判率会在上线时达到3%-4%的水平,并且会逐步减少到最低。

人工智能在仓储物流的应用

仓储物流的包括环节很多,从入库分拣、库位管理、上下架、出库分拣到物料运输,中间涉及分拣机器人、上下料机器人、立库、agv小车、叉车等。

通过计算机视觉用于分拣机器人的感知和地图定位,利用机器学习和深度学习,实现分检机器人的路径规划和避障。通过数学规划等运筹优化算法和遗传算法,实现仓库上下架策略管理。

通过多智能体算法 蚁群算法用于多个分拣机器人的协调行动。基于人工智能技术实现货架、商品、机器人的整体协调,能够更快速的实现产品出入库和高效的仓库货架规划。

人工智能在整体运维的应用

运维数据量庞大,基于深度学习技术在庞大的数据量中发掘价值。

西门子在西班牙的高铁运维中整体的应用。西班牙的高铁公司有一条线从马德里到巴塞罗那,而从马德里到巴塞罗那的航班很多,就像京沪线一样,这个行业面临和航空公司竞争的挑战。后来它公布一个政策,在这条线上如果延误超过15分钟,全额退款。这个高铁线到现在是非常成功的,背后是西门子提供的服务和担保,担保99%的准点率。

2018年汉诺威工业展人工智能应用案例

在西门子展台上利用人工智能技术打造的增加生产柔性的autonomous系统。基于搭载西门子autonomous系统的kuka机器人,这款机器人的最大优势在于其出色的灵活性。其中一台样机搭载了三维感知摄像机,基于图像识别和深度学习技术,能对现场任何环境变化做出灵敏反应,即时调整操作轨迹。。这种技术可以大大增强生产线的柔性,不再局限于生产标准化产品。

在sap展台上展示了模拟饮料装瓶作业的生产线。新型生产线上的大量数据被实时反馈和分析,最终实现给每个瓶子注入不同颜色液体的高效“个性化”生产。通过大数据建模等技术让机器间实现互联,如果从一台机器获取了信息,就能开始预测它的运行结果,预测产品质量,甚至预测整个物流程序,生产运营模式不再是以往那样遇到问题才被动反应。”

在ibm展台上,利用人工智能为大型手扶电梯设备带来“预测性维护”。通过大数据的收集和分析,人工智能可预测出专业机械设备出问题的部分,让技术人员提前采取措施。这种“预测性维护”适用于工业生产中的各类设备。

上述人工智能的应用场景已经有先行者在尝试,但是作为人工智能的应用前提,工厂必须首先要实现数字化,这也是西门子、博世、海尔等公司目前在突破的方向。只有先积累完整的数据,才能够进一步为人工智能所用。关于人工智能在制造业的应用,最后用一句经典的话为文章收尾:我们倾向于高估一项新技术的短期效应,而低估它的长期影响。

此文为删减版,阅读原文欢迎在知乎关注西门子中国,文章链接:https://www.zhihu.com/question/51834986/answer/438950686

无线动作捕捉技术

惯性动捕

动作捕捉

VR手套

相关内容